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OATA Avionics

» Study Report:

e Evolution of operational concepts for 2007, 2011 and 2020
e Evolution of support avionics
e Driven by Eurocontrol OCD and Industrial Reality

» Logical Architecture:

 Based on 2011 Operational Concept
e Developed in UML
* 16 modules, 150 classes, 50 diagrams



Operational Concepts

» 2007 — A near-term scenario:
* Today’s control paradigm
* EXxisting avionics
 Initial datalink and air-ground ADS-B applications

» 2011 — A mid-term scenario:

* More progressive form of flight planning

» Greater integration of airborne data with the ground systems
* Use of advanced RNP-RNAV

* Increased collaborative decision making

» 2020 — A long-term scenario:

* Trajectory negotiation enables advanced flight planning
e Common air-ground understanding of entire trajectory
e ground based planning to minimise conflicts and enable UPT



The Avionics Cluster
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Flight management H
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Situation Awareness
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Provision of ADD
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External Interactions
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Datalink Applications

> Control:
e ACL, ACM, DCL, DSC, D-TAXI and PPD

» Flight Plan:
e FLIPCY, FLIPINT

> Surveillance:
e« Mode S ELS/EHS, Mode AC, ADS-B, ADS-C, CAP, SAP

» Flight Information:
e DYNAV, D-ATIS, D-RVR and D-SIGMET
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Trajectory Prediction

» Trajectory Prediction (TP) is a key enabler with
controller automation

» Ground-based TP accuracy is limited by current
representation of flight path:

* Flight Plan + Tactical Clearances leave room for optimisation

* The avionics applies airline preferences particularly in terms
of cruise speed and vertical rates

» The aircraft has a better knowledge of intent
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Support for Trajectory Prediction

» Datalink Applications:
e CPDLC enables common understanding of tactical clearances
* Flight Plan Consistency enabled by FLIPCY and FLIPINT
» Surveillance Applications:
e Accurate position and velocity information
e Short term (“selected”) intent
e Long-term intent (as Trajectory Change Points)
» Still ambiguity in actual intent and extrapolation between TCPs:
e Current initiative within NUP2 to extent TCP definition

» Alternate Solution:

* Develop a language to accurately describe the flight regime
* Boeing RTE refers to this as Flight Intent
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Building a new paradigm

» Once developed Flight Intent could:
* Provide a formal language to exchange trajectory information

e ATC Systems, with sufficient knowledge of aircraft performance,
could probe safe conflict free trajectories for uplink

* Avionics could refine trajectory and downlink preferred solution
e Solution would be a contract between ATC and Aircraft

> lIssues:

* Accurate knowledge of trajectory reduces the need for
surveillance information.
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Conclusions

» OATA:

A significant contribution to the definition of future ATM

Provides an underpinning to operational concept
development

|dentifies interfaces and interoperability requirements

> OATA Avionics:

Demonstrates the the increasing integration of avionics with
ground systems

Enables rationalisation of air-ground interactions

Suggests accurate trajectory knowledge is an important
enabler of trajectory negotiation for 2020 concepts
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OATA Avionics
Workshop

6th/7th October 2005
Centre de Congres P. Baudis
Toulouse, France
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Thank You

Comments to:

Paul.Ravenhill@Helios-Tech.Co.UK
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